Mechanical Condition Monitoring of Vacuum Circuit Breakers Using Artificial Neural Network
نویسندگان
چکیده
Using the Vibration signatures obtained during the operations as the original data, a mechanical condition monitoring method for vacuum circuit breaker is developed in this paper. The method combined the time-frequency analysis and the condition recognition based on artificial neural network. During preprocessing, the vibration signature was decomposed into individual frequency bands using the arithmetic of wavelet packets. The signal energy in the main frequency bands was used to form the condition feature vector, which was input to the artificial neural network for condition recognition. By introducing the parameter of approximation degree, a new recognition arithmetic based on Radial Basis Function was constructed. This approach could not only distinguish these conditions that belong to different known condition modes but also distinguish new condition modes. key words: vibration signature, wavelet packets, approximation degree, artificial neural network, vacuum circuit breaker
منابع مشابه
The analysis of circuit breakers kinematics characteristics using the artificial neural networks
The paper presents the required parameters in the evaluation of the technical state for the High Voltage (HV) circuit breakers. It details some aspects regarding the influence of the kinematics characteristics to the circuit breakers performances. Also, it presents a possibility to use the artificial neural networks (ANN) in the analysis of the circuit breakers kinematics characteristics, in or...
متن کاملIntelligent Health Evaluation Method of Slewing Bearing Adopting Multiple Types of Signals from Monitoring System
Slewing bearing, which is widely applied in tank, excavator and wind turbine, is a critical component of rotational machine. Standard procedure for bearing life calculation and condition assessment was established in general rolling bearings, nevertheless, relatively less literatures, in regard to the health condition assessment of slewing bearing, were published in past. Real time health condi...
متن کاملDamage detection and structural health monitoring of ST-37 plate using smart materials and signal processing by artificial neural networks
Structural health monitoring (SHM) systems operate online and test different materials using ultrasonic guided waves and piezoelectric smart materials. These systems are permanently installed on the structures and display information on the monitor screen. The user informs the engineers of the existing damage after observing signal loss which appears after damage is caused. In this paper health...
متن کاملIntegrated Preventive and Predictive Maintenance Markov Model for Circuit Breakers Equipped With Condition Monitoring
The Circuit Breaker (CB) is one of the most important equipment in power systems. CB must operate reliably to protect power systems as well as to perform tasks such as load disconnection, normal interruption, and fault current interruption. Therefore, the reliable operation of CB can affect the security and stability of power network. In this paper, effects of Condition Monitoring (CM) of CB on...
متن کاملArtificial neural network models for production of nano-grained structure in AISI 304L stainless steel by predicting thermo-mechanical parameters
An artificial neural network (ANN) model is developed for the analysis, simulation, and prediction of the austenite reversion in the thermo-mechanical treatment of 304L austenitic stainless steel. The results of the ANN model are in good agreement with the experimental data. The model is used to predict an appropriate annealing condition for austenite reversion through the martensite to austeni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEICE Transactions
دوره 88-C شماره
صفحات -
تاریخ انتشار 2005